

Total Time: 25 minutes

Marks: 22 marks

Total Marks: $\frac{}{40}$

Methods 3&4

Review Response Test 1

(Wed Mar 31st)

Resource Free

ClassPad calculators are <u>NOT</u> permitted. Formulae sheet is permitted.

Name:	

1. [1, 2 & 2 = 5 marks]

Find the following indefinite integrals.

(a)
$$\int 4\sqrt{x} \ dx$$

(b)
$$\int (3x-2)^3 dx$$

(c)
$$\int (x^2+2)^2 dx$$

2. [4 marks]

Find the area bounded between the graph of y = 3x(x-4) and the x-axis.

3. [3 marks]

Find the equation of the tangent to the curve $y = \frac{2x-1}{x-1}$ at the point (2, 3) giving your answer in the form y = mx + c.

4. [4 marks]

Find the *x*-coordinates of the points on the graph of $y = x^2(2x+3)$ where the gradient is 12.

5. [6 marks]

Use calculus techniques to determine the coordinates, and their nature, of any stationary points on the curve with equation $y = 2x + \frac{18}{x}$.

Total Time: 20 minutes

Marks: 18 marks

Methods 3&4

Review Response Test 1

(Wed Mar 31st)

Resource Assumed

ClassPad calculators <u>ARE</u> permitted. Formulae sheets are permitted.

Name:	
	-

6. [4 marks]

Given that $f(x) = ax^3 + bx^2 + 2x + 1$, f'(1) = 9 and $f''(\frac{1}{3}) = 4$, find the value of the constants a and b.

7. [3 marks]

Showing the use of definite integrals (without absolute value), find the area enclosed between the graphs of $y_1 = 3x + 6$ and $y_2 = x(x+2)(x-2)$

- 8. [2, 2 & 1 = 5 marks]
- (a) Find the coordinates of the points where the curve $y = \frac{3x^2}{2x+1}$ cuts the line y = 2x-1.

(b) Find the gradient of curve $y = \frac{3x^2}{2x+1}$ at each point where it cuts the line y = 2x-1.

(c) Find the equation of the tangent to the curve $y = \frac{3x^2}{2x+1}$ at the point with x-coordinate of 2.

Review Response 1 "Miscellaneous Exercises 1→5"

9. [6 marks]

The owner of a garden centre wishes to fence a rectangular area of 360 m². She wishes to fence three sides with fencing that costs \$5/m and the fourth side with fencing costing \$11/m.

Show the use of calculus to find the dimensions of the rectangular area that will minimise her fencing costs.